(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(b(a(a(a(b(x1)))))) → c(c(a(x1)))
c(x1) → b(a(a(a(b(x1)))))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(b(a(a(a(b(z0)))))) → c(c(a(z0)))
c(z0) → b(a(a(a(b(z0)))))
Tuples:
A(b(a(a(a(b(z0)))))) → c1(C(c(a(z0))), C(a(z0)), A(z0))
C(z0) → c2(A(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
S tuples:
A(b(a(a(a(b(z0)))))) → c1(C(c(a(z0))), C(a(z0)), A(z0))
C(z0) → c2(A(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
b(
a(
a(
a(
b(
z0)))))) →
c1(
C(
c(
a(
z0))),
C(
a(
z0)),
A(
z0)) by
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(b(a(a(a(b(z0)))))) → c(c(a(z0)))
c(z0) → b(a(a(a(b(z0)))))
Tuples:
C(z0) → c2(A(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
S tuples:
C(z0) → c2(A(a(a(b(z0)))), A(a(b(z0))), A(b(z0)))
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
C, A
Compound Symbols:
c2, c1
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
z0) →
c2(
A(
a(
a(
b(
z0)))),
A(
a(
b(
z0))),
A(
b(
z0))) by
C(a(a(a(b(z0))))) → c2(A(a(c(c(a(z0))))), A(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(b(a(a(a(b(z0)))))) → c(c(a(z0)))
c(z0) → b(a(a(a(b(z0)))))
Tuples:
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
C(a(a(a(b(z0))))) → c2(A(a(c(c(a(z0))))), A(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
S tuples:
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
C(a(a(a(b(z0))))) → c2(A(a(c(c(a(z0))))), A(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:
A, C
Compound Symbols:
c1, c2
(7) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
A(b(a(a(a(b(x0)))))) → c1(C(b(a(a(a(b(a(x0))))))), C(a(x0)), A(x0))
A(b(a(a(a(b(b(a(a(a(b(z0))))))))))) → c1(C(c(c(c(a(z0))))), C(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
C(a(a(a(b(z0))))) → c2(A(a(c(c(a(z0))))), A(a(b(a(a(a(b(z0))))))), A(b(a(a(a(b(z0)))))))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(b(a(a(a(b(z0)))))) → c(c(a(z0)))
c(z0) → b(a(a(a(b(z0)))))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
a, c
Defined Pair Symbols:none
Compound Symbols:none
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))